Journal Article

1) Varner, T., Kulkarni, H. V., Nguyen, W., Kwak, K., Cardenas, M., Knappett, P. S., Ojeda, A. S., Malina, N., Bhuiyan, M. U., Ahmed, K. M., & Datta, S. (2022). Contribution of sedimentary organic carbon to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna River, Bangladesh.. Chemosphere, 302-2(136289), 1-16. https://doi.org/10.1016/j.chemosphere.2022.136289 View More
2) Raaj, S., Pathan, A. I., Mohseni, U., Agnihotri1, P. G., Cardenas, M., Knappett, P. S., Ojeda, A. S., Malina, N., Bhuiyan, M. U., & Ahmed, K. M. (2022). Dam site suitability analysis using geo‑spatial technique and AHP: a case of food mitigation measures at Lower Tapi Basin. Modeling Earth Systems and Environment, , . https://link.springer.com/article/10.1007/s40808-022-01441-3 View More
3) Sharma, S., Sen, S., Mohseni, U., Agnihotri1, P. G., Cardenas, M., Knappett, P. S., Ojeda, A. S., Malina, N., & Bhuiyan, M. U. (2021). Bridge Damage Detection in Presence of Varying Temperature Using Two-Step Neural Network Approach. Journal of Bridge Engineering, 26(6), 04021027. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001708 View More
4) Kuncham, E., Aswal, N., Sen, S., Mevel, L., Cardenas, M., Knappett, P. S., Ojeda, A. S., & Malina, N. (2023). Bayesian monitoring of substructures under unknown interface assumption. Mechanical Systems and Signal Processing, 193, 110269. https://doi.org/10.1016/j.ymssp.2023.110269 View More
5) Pathania, A., Jhamnani, B., Sen, S., Mevel, L., Cardenas, M., Knappett, P. S., & Ojeda, A. S. (2019). Effect of Sinuosity on Shear Stress Distribution in Meandering Channel. International Journal of Engineering and Advanced Technology, 9(1), 219-226. 10.35940/ijeat.A1125.109119 View More
6) Sen, S., Jhamnani, B., Sen, S., Mevel, L., Cardenas, M., & Knappett, P. S. (2021). Stationary hydrological frequency analysis coupled with uncertainty assessment under nonstationary scenarios. Journal of Hydrology, 598, v. https://doi.org/10.1016/j.jhydrol.2020.125725 View More
7) Aswal, N., Sen, S., Mevel, L., Mevel, L., & Cardenas, M. (2021). Estimation of local failure in tensegrity using Interacting Particle-Ensemble Kalman Filter. Mechanical Systems and Signal Processing, 160, 107824. https://doi.org/10.1016/j.ymssp.2021.107824 View More
8) Kuncham, E., Sen, S., Mevel, L., & Mevel, L. (2022). An online model-based fatigue life prediction approach using extended Kalman filter. Theoretical and Applied Fracture Mechanics, 117, 103143. https://doi.org/10.1016/j.tafmec.2021.103143 View More
9) Aswal, N., Sen, S., & Mevel, L. (2022). Switching Kalman filter for damage estimation in the presence of sensor faults. Mechanical Systems and Signal Processing, 175, 109116. https://doi.org/10.1016/j.ymssp.2022.109116 View More
10) Kuncham, E., & Sen, S. (2022). Response and input time history dataset and numerical models for a miniaturized 3D shear frame under damaged and undamaged conditions. Data in Brief, 45, 108692. https://doi.org/10.1016/j.dib.2022.108692 View More
11) Tandon, K., & Sen, S. (2022). Integration of machine learning and particle filter approaches for forecasting soil moisture. Stochastic Environmental Research and Risk Assessment, 36(12), 4235-4253. https://doi.org/10.1007/s00477-022-02258-3 View More
12) Sen, S., & Mevel, L. (2018). Correntropy based IPKF filter for parameter estimation in presence of non-stationary noise process. IFAC-PapersOnLine, 51(24), 420-427. https://doi.org/10.1016/j.ifacol.2018.09.611 View More
13) Gupta, V., & Jain, M. K. (2020). Unravelling the teleconnections between ENSO and dry/wet conditions over India using nonlinear Granger causality. Atmospheric Research, 247, 105168. https://doi.org/10.1016/j.atmosres.2020.105168 View More
14) Saha, S. K., Matsagar, V., & Jain, A. K. (2013). Comparison of Base-Isolated Liquid Storage Tank Models under Bi-Directional Earthquakes. Natural Science, 5(8A1), 27-37. http://dx.doi.org/10.4236/ns.2013.58A1004 View More
15) Saha, S. K., Sepahvand, K., Matsagar, V., Jain, A. K., & Marburg, S. (2013). Stochastic Analysis of Base-Isolated Liquid Storage Tanks with Uncertain Isolator Parameters under Random Excitation. Engineering Structures, 57, 465-474. https://doi.org/10.1016/j.engstruct.2013.09.037 View More
16) Saha, S. K., Matsagar, V., Jain, A. K., & Jain, A. K. (2014). Earthquake Response of Base-Isolated Liquid Storage Tanks for Different Isolator Models. Journal of Earthquake and Tsunami, 8(5), . https://doi.org/10.1142/S1793431114500134 View More
17) Saha, S. K., Matsagar, V., & Jain, A. K. (2014). Reviewing Dynamic Analysis of Base-Isolated Cylindrical Liquid Storage Tanks under Near-Fault Earthquakes. The IES Journal Part A: Civil and Structural Engineering, 8(1), 41-61. https://doi.org/10.1080/19373260.2014.979518 View More
18) Saha, S. K., Matsagar, V., & Chakraborty, S. (2015). Uncertainty Quantification and Seismic Fragility of Base-Isolated Liquid Storage Tanks using Response Surface Models. Probabilistic Engineering Mechanics, 43, 20-35. https://doi.org/10.1016/j.probengmech.2015.10.008 View More
19) Saha, S. K., Matsagar, V., & Jain, A. K. (2016). Seismic Fragility of Base-Isolated Water Storage Tanks under Non-Stationary Earthquakes. Bulletin of Earthquake Engineering, 14(4), 1153–1175. https://doi.org/10.1007/s10518-016-9874-y View More
20) Dhakal, R. P., Pourali, A., & Saha, S. K. (2016). Simplified Seismic Loss Functions for Suspended Ceilings and Drywall Partitions. Bulletin of the New Zealand Society for Earthquake Engineering, 49(1), 64-78. https://doi.org/10.5459/bnzsee.49.1.64-78 View More
21) Saha, S. K., Sepahvand, K., Matsagar, V., Jain, A. K., & Marburg, S. (2016). Fragility Analysis of Base-Isolated Liquid Storage Tanks under Random Sinusoidal Base Excitation Using Generalized Polynomial Chaos Expansion–Based Simulation. Journal of Structural Engineering, 142(10), 1-12. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001518 View More
22) Khan, S., Saha, S. K., Matsagar, V., & Hoffmeister, B. (2017). Fragility of Steel Frame Buildings under Blast Load. Journal of Performance of Constructed Facilities, 31(4), 1-11. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001016 View More
23) Khakurel, S., Yeow, T. Z., Chen, F., Wang, Z., Saha, S. K., & Dhakal, R. P. (2019). Development of Cladding Contribution Functions for Seismic Loss Estimation. Bulletin of the New Zealand Society for Earthquake Engineering, 52(1), 23-43. https://doi.org/10.5459/bnzsee.52.1.23-43 View More
24) Kodakkal, A., Saha, S. K., Sepahvand, K., Matsagar, V., Duddeck, F., & Marburg, S. (2019). Uncertainties in Dynamic Response of Buildings with Non-Linear Base-Isolators. Engineering Structures, 197, 1-18. https://doi.org/10.1016/j.engstruct.2019.109423 View More
25) Kumar, H., Saha, S. K., Sepahvand, K., Matsagar, V., & Duddeck, F. (2021). Effects of Soil Structure Interaction on Seismic Response of Fixed Base and Base Isolated Liquid Storage Tanks. Journal of Earthquake Engineering, 26(12), 6148–6171. https://doi.org/10.1080/13632469.2021.1911887 View More
26) Khakurel, S., Dhakal, R. P., Yeow, T. Z., & Saha, S. K. (2020). Performance Group Weighting Factors for Rapid Seismic Loss Estimation of Buildings of Different Usage. Earthquake Spectra, 36(3), 1141-1165. https://doi.org/10.1177/8755293019901311 View More
27) Kumar, A., Saha, S. K., & Matsagar, V. (2019). Stochastic Response Analysis of Elastic and Inelastic Systems with Uncertain Parameters under Random Impulse Loading. Journal of Sound and Vibration, 461, 1-25. https://doi.org/10.1016/j.jsv.2019.114899 View More
28) Gupta, V., & Jain, M. K. (2019). Impact of ENSO, Global Warming, and Land Surface Elevation on Extreme Precipitation in India. Journal of Hydrologic Engineering, 25(1), 05019032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001872 View More
29) Gupta, V., Jain, M. K., & Singh, V. P. (2020). Multivariate modeling of projected drought frequency and hazard over India. Journal of Hydrologic Engineering, 25(4), 04020003. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001893 View More
30) Gupta, V., Jain, M. K., Singh, P. K., & Singh, V. (2019). An assessment of global satellite‐based precipitation datasets in capturing precipitation extremes: A comparison with observed precipitation dataset in India. International Journal of Climatology, 40, 3667–3688. https://doi.org/10.1002/joc.6419 View More
31) Matsagar, V., Zelleke, D. H., & Saha, S. K. (2020). Multi-Hazard Response Control of Base-Isolated Buildings under Bidirectional Dynamic Excitation. Shock and Vibration, , 1-24. https://doi.org/10.1155/2020/8830460 View More
32) Kumar, H., & Saha, S. K. (2020). Seismic Performance of Base Isolated Elevated Liquid Storage Tanks Considering Soil-Structure Interaction. Practice Periodical on Structural Design and Construction, 26(1), 1-15. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000545 View More
33) Kumar, H., & Saha, S. K. (2021). Seismic Fragility of Fixed Base and Base Isolated Ground Supported Liquid Storage Tanks Considering Soil-Structure Interaction. Journal of The Institution of Engineers (India): Series A, 102(3), 829–839. https://doi.org/10.1007/s40030-021-00542-z View More
34) Aggarwal, Y., & Saha, S. K. (2021). Seismic Performance Assessment of Reinforced Concrete Hilly Buildings with Open Story. Structures, 34, 224-238. https://doi.org/10.1016/j.istruc.2021.07.069 View More
35) Kulariya, M., & Saha, S. K. (2022). Performance Evaluation of Hillside Buildings under Blast and Blast-Induced Ground Motion. Journal of Performance of Constructed Facilities, 36(5), 1-16. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001754 View More
36) Aggarwal, Y., & Saha, S. K. (2022). Component Repair Cost Functions in Indian Context for Seismic Loss Estimation of Reinforced Concrete Buildings. Structures, 44, 1974-1994. https://doi.org/10.1016/j.istruc.2022.08.090 View More
37) Aggarwal, Y. (2022). An Improved Rapid Visual Screening Method for Seismic Vulnerability Assessment of Reinforced Concrete Buildings in Indian Himalayan Region. Bulletin of Earthquake Engineering, 21, 319–347. https://doi.org/10.1007/s10518-022-01537-2 View More
38) Sengar, K. K., Gade, M., & Saha, S. K. (2022). Vector-Valued Intensity Measures for Seismic Risk Assessment of Base-Isolated Liquid Storage Tanks. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 9(1), 1-15. https://doi.org/10.1061/AJRUA6.RUENG-967 View More
39) Dhakal, R. P., Yeow, T. Z., Khakurel, S., & Saha, S. K. (2023). Post-Earthquake Building Assessments: How Long Do They Take?. Bulletin of the New Zealand Society for Earthquake Engineering, (accepted), 1-12. https://doi.org/10.5459/bnzsee.1568 View More
40) Kulariya, M., Saha, S. K., & Khakurel, S. (2023). Multi-Hazard Performance Evaluation of Hillside Buildings Under Earthquake and Landslide. Structures and Buildings, (ahead of print), 1-16. https://doi.org/10.1680/jstbu.22.00132 View More
41) Baddipalli, S., Kulariya, M., & Saha, S. K. (2023). Influence of Masonry Infills on Blast Response of Earthquake-Resistant Reinforced Concrete Buildings Structures. Structures, 50, 908-924. https://doi.org/10.1016/j.istruc.2023.02.078 View More
42) Kumar, H., & Saha, S. K. (2023). Effects of Uncertain Soil Parameters on Seismic Responses of Fixed Base and Base-Isolated Liquid Storage Tanks. Journal of Earthquake Engineering, , . https://doi.org/10.1080/13632469.2023.2195017 View More
43) Singh, G. R., Jain, M. K., & Gupta, V. (2019). Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India. Natural Hazards, 99, 611-635. https://doi.org/10.1007/s11069-019-03762-6 View More
44) Das, S., Jain, M. K., & Gupta, V. (2022). A step towards mapping rainfall erosivity for India using high-resolution GPM satellite rainfall products. Catena, 212, 106067. https://doi.org/10.1016/j.catena.2022.106067 View More
45) Goyal, M., & Gupta, V. (2014). Identification of homogeneous rainfall regimes in Northeast Region of India using fuzzy cluster analysis. Water Resources Management, 28, 4491–4511. https://doi.org/10.1007/s11269-014-0699-7 View More
46) Kaushik, H. B., & Choudhury, T. (2022). Influence of individual wall strengths on lateral strength of urm buildings constructed using low-strength masonry. Journal of Earthquake Engineering, 26(4), 1847-1874. https://doi.org/10.1080/13632469.2020.1742253 View More