Geospatial analysis of toxic metal contamination in groundwater and associated health risks in the lower Himalayan industrial region

Science of The Total Environment

Utsav Rajput, Deepak Swami, & Nitin Joshi

2024-05-20

Once known for its clean and natural environment, the lower Himalayan region is now no exception to human-induced disturbances. Rapid industrial growth in Baddi-Barotiwala (BB) industrial region has led to degradation of groundwater resources in the area. Groundwater samples were collected from 37 locations to study the groundwater chemistry, geospatial variation of 15 toxic metals in groundwater, source apportionment, metals of concern and associated health risks in the region. The results showed rock dominated hydrogeology with decreasing order of anion and cation abundance as HCO3- > Cl- > SO42- > NO3- > Br- > F- and Ca+ > Na+ > Mg2+ > K+ > Li+ respectively. Concentrations of Iron (BDL-3.6 mg/l), Nickel (BDL-0.023 mg/l), Barium (0.22-0.89 mg/l), Lead (0.0001-0.085 mg/l) and Zinc (0.006-21.4 mg/l) were found above the permissible limits at few locations. Principal component analysis (PCA) and coefficient of variance (CV) showed both geogenic and anthropogenic origin of metals in groundwater of the BB industrial region. A consistent concentration of Uranium was detected at all the sampling locations with an average value of 0.0039 mg/l and poor spatial variation indicating its natural presence. Overall, non-carcinogenic (N-CR) risk in the study area via oral pathway was high for adults and children (Hazard Index > 1) with geogenic Uranium as the major contributor (Hazard Quotient > 1) followed by Zinc, Lead and Cobalt. Carcinogenic (CR) risk in the region was high for adults having mean value above the threshold (1E-04) with Nickel and Chromium as the metals of major concern. Spatial variation of health risks was overlayed on village boundaries of the region to identify the potential industrial sources of the metals of major concern. The results highlight the need for immediate remediation of groundwater resources in order to achieve a harmonious coexistence between industrialization and human well-being.

  • Heavy metals and geogenic Uranium traces found in lower Himalayan groundwater.

  • PCA and CV indicated natural and anthropogenic origin of toxic heavy metals.

  • Human health risk assessment resulted high non-carcinogenic and carcinogenic risks.

  • Geogenic Uranium is identified as major source for non-carcinogenic health risks.

  • Nickel and Chromium are identified as major sources for carcinogenic health risks.