Seismic Fragility of Base-Isolated Water Storage Tanks Under Non-Stationary Earthquakes
Bulletin of Earthquake Engineering
Sandip Kumar Saha., Vasant Matsagar, & Manoj Kumar Jain.
2016-02-06
Seismic fragility curves for fixed-base and base-isolated liquid storage tanks are developed under non-stationary earthquakes, and their seismic performance are compared. The correlation between different earthquake intensity measure (IM) parameters and peak response quantities of the base-isolated liquid storage tanks are investigated. The failure criteria are chosen based on (1) the elastic buckling strength of the tank wall, which is defined in terms of critical base shear and critical overturning moment, and (2) in terms of the critical isolation displacement. The uncertainty involved is considered in the earthquake characteristics. Non-stationary earthquake ground motions are generated using Monte Carlo (MC) simulation. Influence of the isolator characteristic parameters and modeling approaches on the seismic fragility of the base-isolated liquid storage tanks is also investigated. Peak ground acceleration is found to be the well correlated IM parameter with the peak response quantities of the base-isolated liquid storage tanks. Substantial decrease in the seismic fragility of the base-isolated liquid storage tanks is observed as compared to the fixed-base tanks. Significant influence of the isolator characteristic parameters on the seismic fragility of the base-isolated liquid storage tanks are reported in the present study.
Base-Isolated; Earthquake; Fragility; Isolation; Lead-Rubber Bearing; Monte Carlo Simulation; Tank; Uncertainty